Splitting the initial dataset into kstar clusters by using the
parameter kstar determined in the module mod_kstar
.
Usage
mod_calc_kamila(
PARAM_KAMILA,
CONT_DF,
CATEG_DF,
FULL_CONT_DF,
FULL_CATEG_DF,
KM_RES,
list = NULL
)
Arguments
- PARAM_KAMILA
data frame with all needed parameters for the Kamila method, from which the following parameters are used: -
numinit
: The number of initializations used. -maxiter
: The maximum number of iterations in each run. -param_kstar
: Best number of clusters estimated in the modulemod_kstar
.- CONT_DF
Subset of the pension register containing all the continuous variables except for the outcome variables aadr and monthly_pension.
- CATEG_DF
Subset of the pension register containing all categorical variables as factors except for the nominal variables marital_stat and benef_type.
- FULL_CONT_DF
Data frame containing the continuous variables used for the estimation plus the outcome variables aadr and monthly_pension.
- FULL_CATEG_DF
Data frame containing the categorical variables used for the estimation plus the nominal variables marital_stat and benef_type.
- KM_RES
Tibble contains the kamila results of the training set.
- list
List of input data frames.
Value
a tidylist
containing the following tidy data frames:
PLOTDATKAM
Data frame containing the clusters factor and the other variables.KM_RES_FINAL
Data frame containing the resulting parameters of the clustering.CONTVARS
Data frame containing the continuous standardised variables.FULL_CONT_DF
Data frame containing the continuous variables used for the estimation.FULL_CATEG_DF
Data frame containing the categorical variables used for the estimation.