Skip to contents

Rename the variables of the pension register.

Usage

mod_prepa_rr(IND_YEARLY_RR, list = NULL)

Arguments

IND_YEARLY_RR

A data frame containing the data of the pension register subsetted for one year only.

list

List of input data frames.

Value

a tidylist containing the following tidy data frames:

  • RR_OASI : A data frame containing all OASI data, whose variables are: variables:

    • year: Year of the pension register extract.

    • age: Age of the individual.

    • age_retire: Effective retirement age.

    • sex: Sex, female if female, 0 if male.

    • nat: Nationality, foreign if 1, 0 if Swiss.

    • resid: Residence, foreign if 1, 0 if Swiss.

    • benef_type1: Old-age type of benefit if 1, 0 otherwise (dummy).

    • benef_type2: Widow type of benefit if 1, 0 otherwise (dummy).

    • benef_type3: Father's orphan type of benefit if 1, 0 otherwise (dummy).

    • benef_type4: Mother's orphan type of benefit if 1, 0 otherwise (dummy).

    • benef_type5: Twice orphan type of benefit if 1, 0 otherwise (dummy).

    • benef_type6: Spouse's compl. type of benefit if 1, 0 otherwise (dummy).

    • benef_type7: Father's child rent type of benefit if 1, 0 otherwise (dummy).

    • benef_type8: Mother's child rent type of benefit if 1, 0 otherwise (dummy).

    • benef_type : Types of benefits type of benefit (categorical).

    • marital_stat1: Divorced marital status if 1, 0 otherwise (dummy).

    • marital_stat2: Single as reference category marital status if 1, 0 otherwise (dummy).

    • marital_stat3: Married marital status if 1, 0 otherwise (dummy).

    • marital_stat4: Widowed marital status if 1, 0 otherwise (dummy).

    • marital_stat: Marital status.

    • splitting: If 1, splitting of the revenues, 0 otherwise.

    • capping: If 1, the pension is capped, 0 otherwise.

    • contrib_m_ind: Total number of OASI contribution months per individual.

    • contrib_y_ageclass: Total number of contribution years per age group.

    • bonus_m_edu: Number of months paid with a bonus for educative tasks.

    • bonus_m_assist: Number of months paid with a bonus for assistance/care tasks.

Examples

#' @examples
#' IND_YEARLY_RR <- structure(
#'   list(
#'     alt = c(
#'       46L, 38L, 14L, 75L, 30L
#'     ),
#'     sex = c(
#'       "f", "f", "f", "f", "m"
#'     ),
#'     nat = c(
#'       "ch", "ch", "ch", "au", "ch"
#'     ),
#'     dom = c(
#'       "ch", "au", "ch", "ch", "ch"
#'     ),
#'     gpr = c(
#'       "rveuve", "renfant_pere_simple",
#'       "rorphelin_pere_simple", "rvieillesse_simple", "renfant_pere_simple"
#'     ),
#'     zv = c(
#'       "geschieden", "geschieden", "ledig", "ledig", "geschieden"
#'     ),
#'     csplit = c(NA, NA, NA, 0L, NA),
#'     cplaf = c(
#'       NA, NA, NA, 0L,
#'       NA
#'     ), jahr = c(2023L, 2023L, 2023L, 2023L, 2023L),
#'     ram = c(
#'       879274L, 2988594L, 5111279L, 8900743L, 1322875L
#'     ),
#'     monatliche_rente = c(
#'       3399L, 2298L, 541L, 2496L, 3894L
#'     ),
#'     age_ret = c(
#'       NA, NA, NA, 68L, NA
#'     ),
#'     eprc = c(
#'       0.0526315789473684, 0.0294117647058824, 0.024390243902439, 0.1, 0.125
#'     ),
#'     lcot = c(
#'       7L, 494L, 209L, 128L, 323L
#'     ),
#'     lcotg = c(
#'       38L,
#'       22L, 13L, 20L, 44L
#'     ),
#'     lbedu = c(
#'       NA, NA, NA, 394L, NA
#'     ),
#'     lbass = c(
#'       NA, NA, NA, 333L, NA
#'     )
#'   ),
#'   class = c("tbl_df", "tbl", "data.frame"),
#'   row.names = c(NA, -5L)
#' )
#'
#' mod_prepa_rr(IND_YEARLY_RR = IND_YEARLY_RR)