Rename the variables of the pension register.
Arguments
- IND_YEARLY_RR
A data frame containing the data of the pension register subsetted for one year only.
- list
List of input data frames.
Value
a tidylist
containing the following tidy data frames:
RR_OASI
: A data frame containing all OASI data, whose variables are: variables:year
: Year of the pension register extract.age
: Age of the individual.age_retire
: Effective retirement age.sex
: Sex, female if female, 0 if male.nat
: Nationality, foreign if 1, 0 if Swiss.resid
: Residence, foreign if 1, 0 if Swiss.benef_type1
: Old-age type of benefit if 1, 0 otherwise (dummy).benef_type2
: Widow type of benefit if 1, 0 otherwise (dummy).benef_type3
: Father's orphan type of benefit if 1, 0 otherwise (dummy).benef_type4
: Mother's orphan type of benefit if 1, 0 otherwise (dummy).benef_type5
: Twice orphan type of benefit if 1, 0 otherwise (dummy).benef_type6
: Spouse's compl. type of benefit if 1, 0 otherwise (dummy).benef_type7
: Father's child rent type of benefit if 1, 0 otherwise (dummy).benef_type8
: Mother's child rent type of benefit if 1, 0 otherwise (dummy).benef_type
: Types of benefits type of benefit (categorical).marital_stat1
: Divorced marital status if 1, 0 otherwise (dummy).marital_stat2
: Single as reference category marital status if 1, 0 otherwise (dummy).marital_stat3
: Married marital status if 1, 0 otherwise (dummy).marital_stat4
: Widowed marital status if 1, 0 otherwise (dummy).marital_stat
: Marital status.splitting
: If 1, splitting of the revenues, 0 otherwise.capping
: If 1, the pension is capped, 0 otherwise.contrib_m_ind
: Total number of OASI contribution months per individual.contrib_y_ageclass
: Total number of contribution years per age group.bonus_m_edu
: Number of months paid with a bonus for educative tasks.bonus_m_assist
: Number of months paid with a bonus for assistance/care tasks.
Examples
#' @examples
#' IND_YEARLY_RR <- structure(
#' list(
#' alt = c(
#' 46L, 38L, 14L, 75L, 30L
#' ),
#' sex = c(
#' "f", "f", "f", "f", "m"
#' ),
#' nat = c(
#' "ch", "ch", "ch", "au", "ch"
#' ),
#' dom = c(
#' "ch", "au", "ch", "ch", "ch"
#' ),
#' gpr = c(
#' "rveuve", "renfant_pere_simple",
#' "rorphelin_pere_simple", "rvieillesse_simple", "renfant_pere_simple"
#' ),
#' zv = c(
#' "geschieden", "geschieden", "ledig", "ledig", "geschieden"
#' ),
#' csplit = c(NA, NA, NA, 0L, NA),
#' cplaf = c(
#' NA, NA, NA, 0L,
#' NA
#' ), jahr = c(2023L, 2023L, 2023L, 2023L, 2023L),
#' ram = c(
#' 879274L, 2988594L, 5111279L, 8900743L, 1322875L
#' ),
#' monatliche_rente = c(
#' 3399L, 2298L, 541L, 2496L, 3894L
#' ),
#' age_ret = c(
#' NA, NA, NA, 68L, NA
#' ),
#' eprc = c(
#' 0.0526315789473684, 0.0294117647058824, 0.024390243902439, 0.1, 0.125
#' ),
#' lcot = c(
#' 7L, 494L, 209L, 128L, 323L
#' ),
#' lcotg = c(
#' 38L,
#' 22L, 13L, 20L, 44L
#' ),
#' lbedu = c(
#' NA, NA, NA, 394L, NA
#' ),
#' lbass = c(
#' NA, NA, NA, 333L, NA
#' )
#' ),
#' class = c("tbl_df", "tbl", "data.frame"),
#' row.names = c(NA, -5L)
#' )
#'
#' mod_prepa_rr(IND_YEARLY_RR = IND_YEARLY_RR)